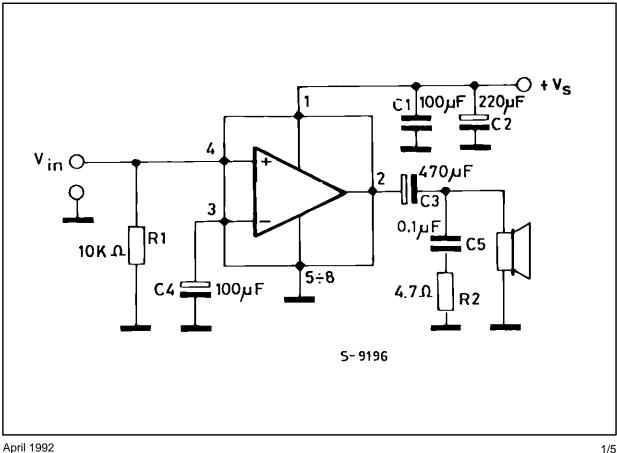


TDA7235

1.6W AUDIO AMPLIFIER

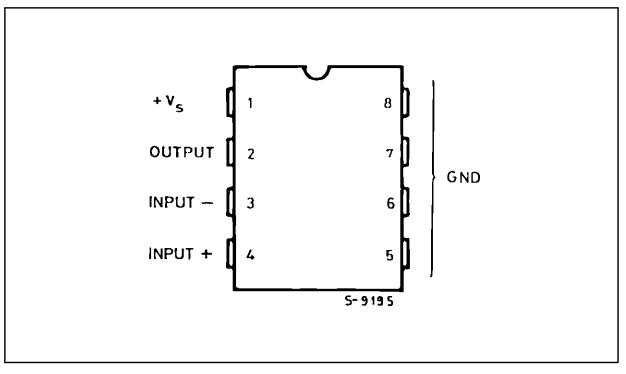
PRODUCT PREVIEW


- **OPERATING VOLTAGE 1.8 TO 24V**
- LOW QUIESCENT CURRENT
- HIGH POWER CAPABILITY
- LOW CROSSOVER DISTORTION
- SOFT CLIPPING -

DESCRIPTION

The TDA7235 is a monolithic integrated circuit in 4 +4 lead Minidip package, intended for use as class AB power amplifier with wide range of supply voltage in portable radios, cassette recorders and players, TV sets, etc..

TEST AND APPLICATION CIRCUIT


This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

TDA7235

ABSOLUTE MAXIMUM RATINGS

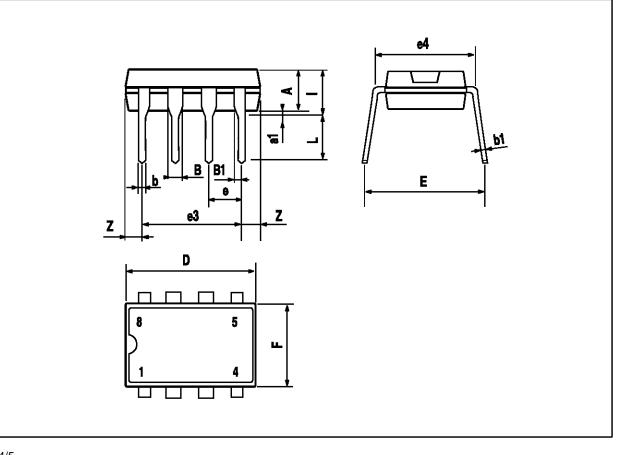
Symbol	Parameter	Value	Unit
Vs	Supply Voltage	28	V
lo	Output Peak Current	1	А
P _{tot}	Total Power Dissipation $T_{amb} = 50^{\circ}C$ $T_{case} = 70^{\circ}C$	1.25 4	W W
T _{stg} , T _j	Storage and Junction Temperature	-40 to150	°C

PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Description	Value	Unit	
R _{th j-amb}	Thermal Resistance Junction-ambient	max.	80	°C/W
R _{th i-case}		max.	15	°C/W

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		1.8		24	V
Vo	Quiescent Output Voltage	$V_S = 9V$ $V_S = 12V$		4 5.5		V V
ld	Quiescent Drain Current			4	10	mA
I _b	Input Bias Current					
Po	Output Power	$\begin{array}{l} d = 10\% \\ V_S = 9V \\ V_S = 12V \\ R_L = 8\Omega \\ V_S = 15V \\ R_L = 16\Omega \\ V_S = 20V \\ R_L = 32\Omega \end{array}$		1.6 1.8 1.8 1.6		W W W W
d	Distortion	$P_O = 0.5W$ $R_L = 8\Omega$		0.3	1	%
Gv	Closed Loop Voltage Gain			38		dB
R _{in}	Input Resistance		100			KΩ
e _N	Total Input Noise	$R_S = 10KΩ$ b = Curve A B = 22Hz to 22KHz		2 3		μV μV
SVR	Supply Voltage Rejection	$f = 100Hz$ $R_g = 10K\Omega$	24	33		dB


ELECTRICAL CHARACTERISTICS ($V_S = 12V$, $T_{amb} = 25^{\circ}C$, f = 1KHz, unless otherwise specified.)

TDA7235

MINIDIP PACKAGE MECHANICAL DATA

DIM.	mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A		3.32			0.131	
a1	0.51			0.020		
В	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
E	7.95		9.75	0.313		0.384
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			6.6			0.260
I			5.08			0.200
L	3.18		3.81	0.125		0.150
Z			1.52			0.060

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

